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Figure 1: We present OpenSurfaces, a large database of annotated surfaces created from real-world consumer photographs. Our annotation
pipeline draws on crowdsourcing to segment surfaces from photos, and then annotates them with rich surface appearance properties, including
material, texture, and contextual information.

Abstract

The appearance of surfaces in real-world scenes is determined by the
materials, textures, and context in which the surfaces appear. How-
ever, the datasets we have for visualizing and modeling rich surface
appearance in context, in applications such as home remodeling,
are quite limited. To help address this need, we present OpenSur-
faces, a rich, labeled database consisting of thousands of examples
of surfaces segmented from consumer photographs of interiors, and
annotated with material parameters (reflectance, material names),
texture information (surface normals, rectified textures), and contex-
tual information (scene category, and object names).

Retrieving usable surface information from uncalibrated Internet
photo collections is challenging. We use human annotations and
present a new methodology for segmenting and annotating mate-
rials in Internet photo collections suitable for crowdsourcing (e.g.,
through Amazon’s Mechanical Turk). Because of the noise and
variability inherent in Internet photos and novice annotators, de-
signing this annotation engine was a key challenge; we present a
multi-stage set of annotation tasks with quality checks and valida-
tion. We demonstrate the use of this database in proof-of-concept
applications including surface retexturing and material and image
browsing, and discuss future uses. OpenSurfaces is a public resource
available at http://opensurfaces.cs.cornell.edu/.

CR Categories: I.4.6 [Image Processing and Computer Vision]:
Scene Analysis—Photometry, Shading I.4.6 [Image Processing and
Computer Vision]: Feature Measurement—Texture;

Keywords: materials, reflectance, textures, crowdsourcing
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1 Introduction

The rich appearance of objects and surfaces in real-world scenes is
determined by the materials, textures, shape, and context in which
the surfaces appear. An everyday room, such as a kitchen, can
include a wide range of surfaces, including granite countertops,
shiny hardwood floors, brushed metal appliances, and many others.
Much of the perceived appeal of such scenes depends on the kinds of
materials used, individually and as an ensemble. Thus, many users—
ranging from homeowners, to interior designers, to 3D modelers—
expend significant effort in the design, visualization, and simulation
of realistic materials and textures for real or rendered scenes.

However, the tools and data that we have for exploring and apply-
ing materials and textures for everyday problems are currently quite
limited. For instance, consider a homeowner planning a kitchen reno-
vation, who would like to create a scrapbook of kitchen photographs
from which to draw inspiration for materials, find appliances with a
certain look, visualize paint samples, etc. Even simply finding a set
of good kitchen photos to look at can be a time-consuming process.
Interior design websites, such as Houzz, are starting to provide a
forum where people share photos of interior scenes, tag elements
such as countertops with brand names, and ask and answer questions
about material design. Their popularity indicates the demand and
need for better tools. For example, people want to:

• Search for examples of materials or textures that meet certain
criteria (e.g. “show me kitchens that use light-colored, shiny
wood floors”)

• Find materials that go well with a given material (“what do
people with black granite countertops tend to use for their
kitchen cabinets?”)

• Retexture a surface in a photo with a new material (“what
would my tiled kitchen look like with a hardwood floor?”)

• Edit the material parameters of a surface in a photograph,
(“how would my wood table look with fresh varnish?”)

• Automatically recognize materials in a photograph, or find
where one could buy the materials online (search-by-texture).

To support these kinds of tasks, we present OpenSurfaces, a large,
rich database of annotated surfaces (including material, texture and
context information), collected from real-world photographs via
crowdsourcing. As shown in Figure 1, each surface is segmented
from an input Internet photograph and labeled with material infor-
mation (a named category, e.g., “wood” or “metal”, and reflectance
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parameters), texture information (a surface normal and rectified tex-
ture), and context information (scene category and object name).
Compared to existing material databases, ours takes a “big data”
approach, collecting large numbers of example materials captured
in situ in their surrounding context. Just as massive databases of
images and objects have led to new advances in image editing [Hays
and Efros 2007; Lalonde et al. 2007] and object recognition [Russell
et al. 2008], we believe that a large and comprehensive catalog of
contextual surface appearance properties is critical for everyday
applications involving exploring, editing, and recognizing materials
and textures. To our knowledge, ours is the first large-scale database
of rich, annotated surface appearance information of its kind.

A central challenge in creating such a catalog is that automatically re-
covering material properties from images is a notoriously difficult in-
verse problem that requires careful calibration [Weyrich et al. 2009]
or strong assumptions about the image formation model [Romeiro
and Zickler 2010]. Our images are scraped from Flickr, so objects
appear under a wide range of uncontrolled lighting conditions, with
unknown scene geometry. These properties raise the question of
whether it is possible to recover any usable material information
from such images. This drives a key aspect of our system: we ask
humans to judge these properties in uncalibrated settings, leveraging
the fact that people are good at recognizing and categorizing materi-
als across a range of lighting conditions and image quality. To scale
to the large numbers of images, materials, and textures we want, we
use crowdsourcing on Amazon’s Mechanical Turk (MTurk).

Even with humans in the loop, creating a useful surface catalog is
very challenging. Internet photos are noisy, the quality of results
from MTurk labelers can vary widely, and interfaces involving mate-
rial parameters can be difficult for novice users to understand. To get
usable results, we designed a multi-stage annotation pipeline, involv-
ing multiple types of tasks, to collect and verify surface annotations,
including material, texture, and contextual information.

We evaluate the quality of this approach and demonstrate the utility
of this database in proof-of-concept applications including surface
retexturing and appearance browsing. We believe that the availability
of such a database can be helpful to many applications in graphics
and vision, beyond the ones we demonstrate.

Our work makes the following contributions:

• A new, large-scale open source database of surface appear-
ance (with thousands of entries and growing) annotated with
material, texture, and contextual information available at
http://opensurfaces.cs.cornell.edu/.

• A methodology for creating such a database through crowd-
sourcing annotations of Internet photo collections.

• A publicly available annotation pipeline to spur further explo-
ration and use of such data in graphics and vision applications.

• A demonstration of proof-of-concept uses of such richly anno-
tated surface information.

2 Related work

Image databases. Over the past few years, researchers have
shown the utility of “big data”—in the form of large, annotated im-
age databases—for addressing difficult problems in graphics and vi-
sion. These databases include 80 Million Tiny Images [Torralba et al.
2008], ImageNet [Deng et al. 2009], the SUN scene database [Xiao
et al. 2010], and the LabelMe dataset [Russell et al. 2008]. LabelMe
has similar goals to ours and uses a significant amount of user anno-
tation, but their focus is on labeling objects, rather than materials.
Other work has extended systems such as LabelMe to material name
annotations [Endres et al. 2010].

While the work described above comprises very large databases of

images, objects, and scenes, existing databases of natural images
of materials are relatively small. This category includes the Flickr
Materials Database (FMD) [Liu et al. 2010] and the datasets of Hu,
et al. [2011]. These datasets are largely made up of close-up photos
of objects made of a single substance, such as wood or glass, and
have primarily been used for the problem of material categorization.
The PSU Near-Regular Texture Database consists of closeups of
textured patterns, including material textures [Liu et al. 2004].

In contrast, our aim is to build a database of materials in context in
photos of everyday scenes, so that we can support applications like
interior design that involve whole scenes, rather than single objects
or materials. Moreover, prior databases annotate each image with
a single category label (e.g. “wood,” “glass”), while we collect a
much richer set of annotations that include reflectance parameters
and surface normals, enabling a wider class of potential applications.

Crowdsourcing. The use of crowdsourcing to collect data is gain-
ing adoption, and has been used in recent approaches to a range
of problems, including understanding shape through gauge fig-
ures [Cole et al. 2009], creating a mesh segmentation database [Chen
et al. 2009], devising a retargeting evaluation framework [Rubinstein
et al. 2010], and for integrating humans into the loop for micro-
tasks [Gingold et al. 2012]. The experiences from this body of prior
work has informed our design process.

Material acquisition and databases. Material acquisition is an
active area of research (for a recent survey, see [Weyrich et al. 2009]).
A few public databases exist with carefully calibrated measurements,
including the MERL database [Matusik et al. 2003] with 4D BRDF
measurements for 105 materials, fit to various BRDF models [Ngan
et al. 2005], and CUReT [Dana et al. 1999], with 6D measured BTFs
(bidirectional texture functions) for 61 samples with various lighting
and illumination conditions. The complexity of acquisition and
quality of these databases has typically limited their size. To help
address these issues, appearance acquisition research has focused on
hardware solutions [Ren et al. 2011], but large databases of measured
materials are still difficult to acquire.

Rather than capture detailed, high-quality reflectance information
for a small number of materials under controlled conditions, our
goal is complementary; we aim to gather large numbers of surface
annotations, in situ, from photographs taken under a wide variety of
uncontrolled settings. Since humans provide annotations, we aim
for perceptually plausible appearance data.

3 Overview

We present an overview of OpenSurfaces, and discuss some of our
key design decisions. Our annotation pipeline takes as input a set
of consumer photos depicting one or more surfaces, in context, in
an interior scene, such as a kitchen. Each photo is processed in
multiple stages, resulting in segmented surface regions (e.g., coun-
tertops, floors, cabinets, drawer handles, etc.), where each segment
is annotated with material, texture and contextual information.

Creating this database involves several challenges:

• How can we create a high-quality database from consumer
photographs? What kinds of photos should we use?

• How can we help novice labelers annotate surfaces? How can
we scale this annotation to build a very large database?

• What information is represented in the database?
• What tasks are needed to build this database?

3.1 Community photo collections

One important motivation of our work is to collect a large range of
everyday surfaces in context from everyday imagery. By “in context,”
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we mean that we want to capture the settings in which various
surfaces appear—for instance, where a given type of material tends
to appear in an image, what kinds of objects it belongs to, and what
other materials it appears in combination with. We chose to focus on
indoor locations such as kitchens, living rooms, and dining rooms,
which contain indoor materials of practical use, though it is easy to
generalize our approach to broader categories.

We use Creative-Commons-licensed Flickr photos as the main source
for our images, as we found that Flickr contains a vast range of real,
everyday materials in context in high-quality photoso. Images from
the SUN database [Xiao et al. 2010] were not usable for our purposes
because they are typically not of high enough resolution.

3.2 Human annotation

Online consumer photos are far removed from the carefully cali-
brated, high-dynamic range images typical of material acquisition.
Our photos contain multiple materials on surfaces of unknown ge-
ometry, are captured under widely varying and unknown lighting
conditions, lack radiometric calibration, and may have been post-
processed. Hence, extracting meaningful surface properties from
these images is well beyond the state-of-the-art of automatic inverse
rendering algorithms. Optimization [Romeiro and Zickler 2010] and
machine learning approaches [Dror et al. 2001; Liu et al. 2010] to
inferring materials have been studied recently, but do not yet demon-
strate the performance necessary to annotate materials in noisy,
real-world images. These considerations motivate another major
design choice in our approach: using humans to annotate our images
via crowdsourcing. Humans are reasonably good at identifying mate-
rials and their properties over a range of lighting conditions [Fleming
et al. 2003], and the availability of crowdsourcing lets us collect
annotations at scale for large image collections.

In this paper we focus on an annotation pipeline we deployed on
Amazon’s Mechanical Turk (MTurk), as MTurk provides a platform
for annotating many images in a short amount of time and at low
cost. However, our system can also be run as a stand-alone inter-
face hosted on our servers, so that new photos can continue to be
annotated (similar to [Russell et al. 2008] for object labeling).

We faced two main challenges in getting useful annotations from
labelers. First, annotating surface properties in a photo is not a
familiar task to most people, and even communicating what we
mean by a “surface,” “material,” or “texture” to a novice is difficult.
Second, MTurk annotators can be unreliable—users can ignore
instructions or intentionally provide bad labels. To deal with these
sources of noise, we split our material annotation tasks into several
subtasks, with the goal of making each subtask as simple, modular,
and intuitive as possible. We also use techniques to account for noise,
and to verify the results of each subtask. To improve robustness to
noise, we use the CUBAM machine learning algorithm of Welinder,
et al. [2010] which uses a model of noisy user behavior for binary
tasks (e.g., voting for the quality of a surface) to extract better results.
In part, it models the competence and bias of each user based on
how often they are in agreement with other users.

3.3 OpenSurfaces data representation

Real-world surfaces can be characterized in many ways, including
(in increasing order of complexity): names of material categories
(e.g., “wood” vs. “metal” vs. “paper”), image exemplars, simple
diffuse reflectance models, parametric BRDF models, 4D BRDF
measurements, and 6D BTDF measurements. In choosing a surface
representation for our database, we considered several factors. First,
different representations are suitable for different tasks. For a ma-
terial recognition task, one might want a database with segmented
materials labeled with a category name (“wood” vs. “plastic”), for
use in training classifiers. Other applications, such as interior design

(“replace the wood floor in this photo with a shinier one”), might
warrant a richer description of materials in terms of their reflectance.
Hence, we collect multiple types of annotations for each surface,
including material names and reflectance parameters.

Surface normals and rectified textures. While some types of
surfaces we consider have a uniform BRDF, many, such as granite
or wood, are highly textured. Thus, we chose to store texture infor-
mation to describe surfaces as well. Because textures in photos can
be significantly foreshortened by perspective, we create a subtask
where labelers mark regions as planar or non-planar, and indicate
the surface normal of planar regions using a 3D perspective grid;
this allows us to create and store rectified textures.

Reflectance. We ask labelers to annotate material parameters for
segmented surfaces. Ideally, we would collect the most detailed
BRDF information possible; we especially want to move beyond
simple Lambertian models, because specular and glossy materials
are extremely common in indoor scenes. On the other hand, there
is only so much information that can be recovered from a single,
uncalibrated image; moreover, our tasks should not be too difficult
for human labelers. Thus, we chose to represent the materials using
a simple parametric BRDF model (Section 4.7).

Data representation. Our final surface representation includes
the following information for each surface (illustrated in Figure 1):
material data (a material name, and reflectance parameters including
diffuse albedo, gloss contrast, and gloss roughness), texture data (a
surface normal and rectified texture (if planar)), and context data
(an object name for the surface, and a scene category in which
the surface occurs). Each surface also stores quality information,
including a segmentation quality score and a planarity score.

3.4 Annotation stages

To build this representation for surfaces, our labelers perform a series
of tasks in an annotation pipeline consisting of the following stages
(Stage 0 is automatic, and the rest involve humans in the loop):

0. Download images of various scene categories from Flickr.
1. Filter out images that depict the wrong scene category.
2. Flag images that are improperly white balanced.
3. Segment regions of a single material/texture from each image.
4. Name the material for each region.
5. Name the object associated with each region.
6. Label each region as planar or non-planar.
7. Rectify each planar region by specifying a surface normal.
8. Match reflectance parameters for each white balanced region.

Every stage is carefully validated, with at least five labelers contribut-
ing to each decision, with some tasks (such as validating reflectance
parameters) shown to up to ten.

4 The OpenSurfaces annotation pipeline

We now describe our annotation pipeline in detail. We first discuss
how we obtain an initial set of input images, then describe the
pipeline of tasks performed on each image and segmented region.
We ran several pilot studies for each of these tasks; we describe how
these studies guided the design of our final interfaces and tasks. More
details on each task are available in the supplementary document.
Figure 2 shows a block diagram of the annotation pipeline.

Stage 0: Collecting images. First, we needed to gather a set of
high-quality images of indoor scenes. We obtain our images from
Flickr, using search terms for each room type, such as “kitchen”
and “living room” (see supplementary for full list). Since our goal
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Figure 2: OpenSurfaces annotation pipeline. Each stage contains a typical example.

is to recover realistic parameters, we exclude images with the tag
“hdr,” which are typically highly stylized. We also limit our search
to Creative Commons photos that allow “sharing” and “remixing,”
to ensure that our database can be used in a variety of applications.

We then group the remaining images by scene type. In total, we
downloaded 1,099,277 images. We further pruned the list keeping
only those photos that are: (a) color JPEG high-resolution (≥ 6
megapixels), (b) at most 32MB in size (to control our disk footprint),
and (c) have focal length information in their Exif headers (which we
use for the rectification in Section 4.6). After this filtering step, we
were left with a final set of approximately 207K images; we picked
a few scene categories to focus on, giving us about 92K images.

4.1 Stage 1: Filtering images by scene category

Though we use the text tags associated with Flickr photos to down-
load an initial set of photos, in practice these tags are quite noisy.
For example, an image tagged “kitchen” may depict a bar named
“The Kitchen,” or something else entirely. As in previous work on
obtaining images of categories [Deng et al. 2009], we must curate
the images of each scene category to find the relevant ones. In this
task a labeler is shown a grid of 50 images drawn from a given
category (e.g., “dining room”), and is asked to select all the images
that belong to that category.

Each image was shown to five labelers. We found that labelers are
very fast and reliable at this task, and pruned the image list down
to about 25K images. Our database mostly contains scenes from
the following categories: kitchen, living room, bedroom, bathroom,
staircase, dining room, hallway, family room, and foyer.

4.2 Stage 2: Flag images with improper white balance

While human beings are able to judge material properties in a range
of lighting conditions due to color constancy, there are limits to this
ability [Brainard et al. 1997], and the lighting conditions in online
consumer photographs can be poor and highly variable from photo
to photo. So that our labelers can reason about the true color of a
surface as accurately and reliably as possible, we filter images that
are significantly distorted in color space. To do so, we designed a
task where labelers click on objects that they believe are white, and
use this feedback to reject images that appear to be improperly white
balanced. Users are prevented from clicking on pixels that are close
to saturated (R,G,B ≥ 253), or within 70 pixels of another point.

Each selected pixel is converted to L∗a∗b∗ color space. If the median
value of ||(a∗, b∗)|| is ≤ 15, then that user’s submission counts as
one vote towards the photo being white balanced. Each photo is

seen by five labelers; we run CUBAM on the full set of resulting
votes, which yields a score (positive or negative) for each photo. If a
photo receives a positive CUBAM score, then we consider it white
balanced. We opted for this stringent rule because of the large size of
our image collection; we can eliminate many images, and still have
a large pool of remaining images to label. Compared to majority (3
out of 5) voting, CUBAM changed 14% of labels from good (white
balanced) to bad (not white balanced), and 0.8% from bad to good.

Since material recognition is still possible in distorted color spaces
[Sharan et al. 2009], we only use white balancing to filter inputs for
appearance matching (Stage 8).

4.3 Stage 3: Material segmentation

The next task is to segment regions of constant material or texture
from each image. These regions will become the surfaces that are
annotated in later tasks.

Pilot study. This task is related to the object segmentation task
in LabelMe, but when we tried adapting LabelMe for our task, the
interface proved to be cumbersome. We created a new interface
with features (smooth zoom, undo/redo, automatic pan) designed
to encourage better material segmentations; user feedback was very
positive. The smooth zoom and automatic pan features were espe-
cially important, yielding segmentations with greater accuracy and
more vertices. Without automatic pan (scrolling the view when users
click near the edge), users often submitted clipped polygons.

For this task, a labeler is presented with an image and instructed to
segment six regions based on material and texture, and not object
boundaries. The user is shown several examples of good and bad
segmentations. An ideal segmentation contains a single material or
texture, and tightly hugs the boundary of that material region. The
user creates polygons by clicking in the image, or entering a mode
where they can adjust an existing polygon (the interface zooms in
for fine-scale adjustments; the user can also zoom in or out). The
interface saves a full undo/redo stack, and logs all actions with a
timestamp for later replay. The interface disallows self-intersecting
polygons, but separate polygons can be nested or overlapping.

Once a labeler has segmented regions from the image, we post-
process the polygons to create a set of disjoint shapes. This step is
to address common cases that arise in these kinds of tasks where
a large region of a single material contains a smaller region of
a second material (e.g., a door with a handle, or a shower stall
with a drain). The easiest way to label these kinds of surfaces
is to provide the boundary of the outer shape, and separately the
boundary of the inner shapes. Our post-processing stage detects
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such intersections and yields new shapes as follows: if one shape
contains another shape, the inner shape is unchanged, and the outer
shape has a hole corresponding to the inner shape; if two shapes
partially intersect, three regions are generated to capture cases where
the foreground partially intersects the background. The output is
stored as a 2D mesh triangulated by [CGAL]. The supplementary
material describes this process in more detail. While this technique
can occasionally over-segment overlapping regions, we found it to
be very useful in addressing common configurations.

4.3.1 Voting for material segmentation quality

The quality of segmentations from this task varies widely; while
many regions were surprisingly well-segmented, some were too
small, or had sloppy boundaries, and others were good object (but
not material) segmentations. We created an additional task where
users vote on the quality of each segmentation; these votes are used
to determine a quality score for each segmented surface region.

This voting task is somewhat subjective, since it is not always clear
what constitutes a “single material” or how labelers interpret the
word “texture”. Thus, we accept shapes as high quality only if there
is a certain amount of consensus. We asked five voters to vote on the
quality of each segmentation, and ran CUBAM on the resulting votes.
Compared to majority (3 out of 5) voting, CUBAM changed about
7.0% of the bad examples to good, and about 8.38% of the good
examples to bad. By default, we discard shapes with a CUBAM-
computed quality score below a threshold, but this threshold can be
adjusted for applications that need higher-quality segmentations, or
which can tolerate lower-quality segmentations.

As we ran the material segmentation task, we noticed that a few
users produced exceptionally detailed segmentations, with an ac-
curacy higher than the output of the above voting step. After col-
lecting about 30,000 segmentations, we restricted the task to the
best 26 workers (out of 530, using MTurk qualifications) and re-
moved the voting step. This doubled the average detail from 11.6 to
20.3 vertices while reducing our total effective cost from $0.035 to
$0.025/shape (including bonuses), since we were no longer paying
for voting or for shapes that we later rejected. Even with the smaller
set of workers, submission rates remained above 4,000 shapes/day.

4.4 Stages 4 and 5: Naming materials and objects

Finally, we want semantic information for each material segmen-
tation: a material name, such as granite or wood, and an object
name, such as wall, floor, or countertop. These kinds of labels can
enable better searching of the database, interesting analytics (“what
materials do countertops tend to be made of?”), and category labels
for recognition and search.

Material names. The material name is meant to indicate the
“stuff” [Adelson 2001] that gives the surface its appearance. In
a pilot study, we designed an interface, inspired by LabelMe [Rus-
sell et al. 2008], where a user is presented with a material segment
and asked to enter a freeform text label, with an “auto complete” fea-
ture to suggest material names from a database. However, we found
a huge amount of noise in the labels that users entered—multiple dif-
ferent words for the same substance, and misspelled or non-English
terms were common. Based on this study, we moved to an interface
where a user chooses a material name from a discrete set of choices.
We selected the potential names from the results of our pilot study,
and taxonomies in interior design [Juracek 1996]. In total, we se-
lected 34 possible material names. After observing that labelers
struggled with painted surfaces (walls and ceilings), we introduced
the category “painted” to include all surfaces with an outer layer of
opaque paint. Without this label, users would guess the underlying
surface, causing a split between “wallboard”, “wood”, “plaster”, and
“concrete”. Users also struggled with laminate surfaces designed to

resemble wood or granite. This was resolved by instructing workers
to place fake granite and real granite into the same “granite” category
(similarly for wood). Users were also given the option of selecting
“not on list,” “more than one material,” and “I can’t tell.” As the
task progressed, we added 6 items to the list by observing items
consistently labeled “not on list”. The full list of 34 material names
is provided in the supplementary material.

Object names. We also create a separate task in which we collect
object names, such as “floor” and “countertop,” for each segmented
surface region. Because we are most interested in categories of
objects involved in material design, such as structural elements or
worktops, we also limit users to a discrete set of object labels, where
the list of labels depends on the material (e.g., “clothing” for fabric,
“handles” for metal). We otherwise use the same interface as in the
material naming task above. The full list of object names is provided
in the supplementary material.

To handle noise, we only keep a semantic label if 3 out of 5 labelers
agree, which we found to be reliable. For both types of labels,
labelers agreed on a label for about 80% of the segmentations.

4.5 Stage 6: Planarity voting

To rectify each surface region, or transfer that region to a new photo,
we need to know the geometry of that surface. For many regions
(e.g., a chandelier), the geometry can be quite complex; hence, we
chose to identify regions with simple, planar geometry and treat
these specially in our database. Planar regions are very common and
account for an interesting class of objects that one might want to
transfer between images (such as floors and countertops). Thus, we
created a task in which workers vote for whether a given segment
lies on a single plane. For this task, we use an interface similar to
that of the quality voting task, presenting workers with a grid of
images zoomed into segments and instructing them to click on all
segments that are planar. Each segment is shown to five users, and
the results are aggregated using CUBAM.

4.6 Stage 7: Rectified textures

For each planar surface, we seek to create a rectified texture that
appears to look “head on” at that surface. For this task, labelers are
shown a photo with a planar region annotated in red, with a small grid
and surface normal inside the region. They are instructed to “drag
the blue arrow to point away from the surface.” As they drag the grid,
the surface is transformed in real time, via a homography computed
from the normal and the image’s Exif focal length, and shown to the
right of the photo (see Figure 3(a)). The user adjusts the grid until
the normal looks correct and the texture looks rectified. Users can
also adjust the rectified result directly by dragging on it. We instruct
users “tiles and wood patterns should appear parallel, and rectangles
inside the shape should have 90 degree right angles.” We also
provide many examples of good and bad rectifications, and found
that users produced higher quality results when shown negative
examples featuring rectifications that are only slightly incorrect.

The grid and surface normal are rendered in perspective according to
the image focal length. We set the 3D depth so that the grid projects
to a constant width when facing forward. The live rectification is
performed by constructing a WebGL scene and encoding the desired
homography into the camera projection matrix. Since the scaling
within the texture plane is arbitrary, we apply a scaling transform to
the homography so that the bounding box of the rectified shape fits
exactly within the view.

While prior work typically uses a gauge figure to represent a surface
normal figure [Koenderink et al. 1992; Cole et al. 2009], we found a
3D perspective grid to be much more effective. We collected 10,000
normals of each type, and found that the RMS error between the
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submitted normals and final selected normals was 32.1 degrees for
gauge figures and 14.9 degrees for planar grids.

When given a continuous space to explore, we found that users
did not provide surface normals of sufficient accuracy to rectify
surfaces, and so there was often some skew left in the rectified
texture. We address this by detecting vanishing points (VPs) and
snapping normals to the closest VP. We obtain VPs by finding
line segments with LSD [von Gioi et al. 2010], then clustering the
segments with J-Linkage [Toldo and Fusiello 2008], and solving for
the optimal VP for each cluster [Tardif 2009; Feng et al. 2010]. We
then have five users vote on both the original and snapped normals.
If both are voted “correct”, we use the snapped normal.

4.7 Stage 8: Appearance matching

Our final task is to find reflectance parameters that match the ap-
pearance of each segmented surface (Figure 3(b)). In this task, a
synthetic object is rendered alongside the surface to be matched
(and with the photo as a backdrop). The design of this task involved
several considerations, especially (1) the choice of synthetic scene
to render (so as to give effective, accurate visual feedback to labelers
with the goal of good appearance matching) and (2) the generality
of the material representation and ease of use of the interface.

Choice of synthetic scene. To create a synthetic scene for effec-
tive appearance matching, we had to choose a shape, material, and
lighting to be rendered with the current user-selected parameters to
give the labeler feedback. We ran several pilot studies before we
settled on a set of design choices for our scene and interface.

Shape. Vangorp et al. [2007] recommend the use of a blob shape
for improved perception of material reflectances. We ran a study
with an interface that included both a sphere and a blob, but found
that the blob shape was preferred; our final interface uses just the
blob (see Figure 3(b)).

Lighting. Initially, we hypothesized that matching the lighting of
the input photo in our synthetic scene would provide the most effec-
tive cues to the user in this task. Because automatically inferring
lighting is difficult, we ran a pilot study where we asked labelers
to adjust spherical harmonic coefficients of an environment map to
roughly match the lighting of the input photo—for instance, making
the left or right side brighter based on windows present in the real
scene. However, we found that users were not skilled at recreating
lighting [Ramanarayanan et al. 2007], especially in the low-dynamic
range input images we provide. Fleming et al. [2004] recommend

(a) Texture rectification (b) Appearance matching
Figure 3: (a) Stage 7: Rectifying planar textures interface. This
figure shows a successfully completed task, where the perspective
grid on the left appears to lie flat against the surface, and the texture,
shown on the right, is correctly rectified. (b) Stage 8: Interface for
appearance matching to recover material parameters.

the use of environment maps with natural lighting statistics to im-
prove material perception. We selected the high dynamic range
environment map of the Ennis-Brown House [Debevec 1998] (a
high-quality environment map of an indoor scene). Other techniques
for recreating lighting with user annotation (e.g. [Karsch et al. 2011])
would be worth considering in the future.

Material choice. The choice of material representation was a
tradeoff between accuracy and ease of labeling. Common choices
in graphics are Ward-based models and microfacet-based models
(e.g., Cook-Torrance and variants). We made our choice based
on pilot studies as well as the material design study of Kerr and
Pellacini [2010], which found no preference between three broad
classes of models: Ward [1992], perceptual Ward [Pellacini et al.
2000], and a microfacet-based model. In our pilot studies with
these models, we found that the intuitive explanation of the percep-
tual Ward parameters (contrast gloss (c), and distinctness of image
(d) respectively) worked well in the MTurk setting, so we selected
the perceptual Ward with a balanced optimization for grazing an-
gles [Geisler-Moroder and Dür 2010] as our model of choice. Note
that because the intensity of the input illumination is unknown for
our photos, the user-specified diffuse albedo is only correct up to a
scale factor; however, the roughness values are absolute.

In another preliminary study we found that matching the color to
the real object was the hardest part of the task (as also reported
in [Kerr and Pellacini 2010]). To assist labelers with color matching,
we modified our interface in three ways. First, we simplified our
model to avoid having two separate color wheels for diffuse and
specular color. Instead, we let the user select either: (a) a diffuse
color, with uncolored specularity and specular roughness (shown
in Figure 3(b)); or (b) a colored specular material with roughness,
but no diffuse component for colored gloss. Second, to start our
users off on the right track, we initialize the diffuse color based on
an analysis of the photo. We perform a k-means clustering (with 4
clusters), on the pixels of the segmented surface, and use the mean
of the largest cluster to initialize the color widget. Third, users may
click on pixels in the segmented surface to set the color. These three
modifications significantly improved the quality of our appearance
matches, as users spent less time hunting for matching colors; users
stopped reporting that they had trouble finding colors, and 85% of
submissions were voted to have a perceptual match for color.

Figure 3(b) shows our interface, including a target image region to
be matched cropped from the photo, the surrounding context with
the region highlighted in red, the rendered 3D blob, and a series of
perceptual sliders to edit blob appearance. To specify color, we use a
HSV (hue, saturation, value) widget, as in [Kerr and Pellacini 2010].

Rendering and precomputation. Since the task runs in the
browser, we made minimal assumptions about users’ graphics cards
and bandwidth capabilities. This precluded the use of sophisticated
precomputation-based methods [Ben-Artzi et al. 2006] with high
compute and memory requirements. To achieve interactive perfor-
mance, we ignore inter-reflections in the blob. Instead, we prefilter
environment maps to obtain a diffuse map and 16 gloss maps at
different roughnesses sampled according to the d axis from the per-
ceptual Ward model, with α ∈ [0, 0.2]. The HDR prefiltered maps
are packed into RGBE textures and encoded as PNG files (1.6MB).
At render time, the blob normal is rasterized, and two texture lookups
are performed for the diffuse and gloss components from the pre-
filtered maps; the result is tone-mapped using Reinhard [2002]. We
assume that the log-average luminance (required by [Reinhard et al.
2002]) is approximately constant, so it can be stored offline.

Quality. To filter out low quality submissions, we show every
match to ten users: five evaluate the color, and five evaluate the gloss
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Figure 4: Example segmented surfaces labeled “wood” (top row)
and “carpet” (bottom row). Each item shows the number of vertices
and the time spent.
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Figure 5: Statistics over shapes in our database. Left: Histogram of
vertex counts, Center: Histogram of CUBAM scores from voting on
shape quality, Right: Average CUBAM score for each vertex count.

if the color matches. We found that evaluating both properties at
once causes users to ignore gloss and focus only on color. As with
the other voting tasks, we aggregate the results with CUBAM.

5 Results

In this section, we analyze the OpenSurfaces data collected to date
(these statistics reflect a snapshot in time, and will change as the
database continues to grow). We also discuss the cost and effective-
ness of each task (see Table 1).

5.1 OpenSurfaces statistics

We present statistics on the surface data (segmentations, textures,
reflectances, and contextual data) collected using our methodology.

Images. Our database currently contains 25,357 curated images,
from an initial set of 91,868 sent through the curation task. From
our large set of downloaded photos, we prioritized room categories
with the largest number of images: kitchens, bathrooms, and living
rooms; these have the greatest representation in our database.

Material segmentations. Our database consists of 70,005 seg-
mentations deemed to be good by CUBAM out of 103,513 user-
submitted polygons. Figure 5 summarizes the shapes in our database,
as well as their quality, as determined by user voting and the
CUBAM outputs. Figure 4 shows examples of our segmented sur-
faces (see the website for many more). Figure 5 (left) shows a
histogram of vertex counts over all submitted polygons. Users were
required to create polygons with at least four sides, though there
are a considerable number of polygons (over 12,000) with more
than 30 vertices (the most complex polygon to date has 2,191 ver-
tices). Figure 5 (center) shows a histogram of CUBAM-computed
quality scores for all shapes after quality voting. The peak near 0
corresponds to shapes with high disagreement among labelers. This
accords well with user feedback about ambiguous cases.

We observed that the amount of disagreement between labelers
varies considerably depending on the task. Image curation (Stage

Figure 6: Example rectified textures. Left: original photographs
with segmented surface highlighted and user-specified surface nor-
mal. Right: rectified texture with provided surface normal.

1) had the most agreement, with the fewest number of items with
small CUBAM scores. Finally, Figure 5 (right) shows the average
CUBAM quality score for shapes as a function of their vertex count.
Not surprisingly, more detailed shapes also tend to be of higher
quality (as observed anecdotally in other work, including LabelMe).

Material and object names. In total, we have 58,928 surfaces
annotated with a material name, and 33,378 annotated with object
names. These labels allow for interesting analytics, such as: What
distributions of materials tend to appear in each type of room? What
kinds of objects tend to appear in each material category? Our web-
site includes up-to-date statistics for typical material distributions.
Because our dataset has a few forms of bias (see Section 5), these
numbers are not necessarily representative of rooms or objects in
general, but still reveal interesting trends in our data.

Planarity. Surprisingly, many users struggled with the idea of pla-
narity. For validation, we manually reviewed 35,000 planar outputs
and observed a precision of 96.5%. Almost all of the mistakes were
from users conflating piecewise-planar with planar, selecting sur-
faces such as two walls, despite specific instructions and examples to
avoid this case. While it only took a few hours to find and remove the
3.5% of the outputs, we could add a follow-up stage that specifically
filters out piecewise-planar regions.

Rectified textures. Compared to the earlier tasks, rectifying a
planar surface (by specifying a surface normal in the image) is
evidently much more difficult. Out of 21,808 shapes that were input
to our rectification task, about 16,882 (77.4%) shapes had a surface
normal (or snapped surface normal) that was voted as “correct”.
While individual users were generally poor at the rectification task,
even lazy labelers were accurate enough that snapping to the nearest
vanishing point often produced the correct normal.

When voting on submissions, labelers were reasonably capable of
judging “correct” normals, but struggled to interpret the resulting
rectified texture. On average, incorrect normals that were judged
to be “correct” were 12 degrees away from the correct normal. For
some reason, we found a particularly high number of malicious users
for this task; it was necessary to separately detect and block users
who selected “yes” for every proposed match. Examples of the final
rectifications are in Figures 6 and 7 (see website for more).

Reflectance parameters. Appearance matching (by specifying
reflectance parameters) was also a challenging task; out of 40,148
surfaces annotated with reflectance parameters, about 27,648 (69%)
were accepted as having sufficient quality. Figures 8 and 9 show
examples of high-quality appearance matches (see website for more).
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Wood

Tile

Marble

Granite

Figure 7: Example rectified textures. Each row: textures rectified using normals from our database, sorted by decreasing vertex count. Each
row contains a single type of material: wood, tile, marble, and granite.

Fabric

Wood

Figure 8: Example reflectance parameters. First and third rows: material segmentations from our database. Second and fourth rows: blobs
rendered with user-specified perceptual Ward parameters.

Figure 9: Example reflectance parameters. Left: original photo-
graph. Center: region to be annotated. Right: blob rendered with
the user-specified perceptual Ward parameters.

As one would expect, users were much more skilled at judging the
correctness of matches compared to providing new matches. For
each shape, the variance of the perceptual Ward parameters (c and
d), decreased from 0.00714 to 0.00452 (34%) and from 0.00297
to 0.00287 (3%) respectively as a result of the two quality voting
stages. To further explore the effect of d, and further validate the
quality of this pipeline, we added a synthetically rendered image
rendered with a state-of-art global illumination algorithm [Walter
et al. 2012]. Compared to ground truth, the recovered roughness
parameter (d) had an RMS error of 0.057 (28% of the range). Flem-
ing et al. [2003] found an RMS error of 16% for roughness (d)
when matching identical spheres across varying illumination. When
comparing materials across different geometries (same illumination),
Vangorp et al. [2007] found that users can correctly decide if two
different objects have the same material 62% of the time. Our im-
ages with varying shape and lighting are more challenging, and our
matches appear in line with these perceptual studies.

5.2 Task analytics

We now present statistics about our set of tasks, as well as additional
observations about the results. Table 1 shows summary statistics
for each type of task, including (1) the average payment for each
item per task, (2) the average amount of time spent per item, (3)
the number of input items processed, and (4) the fraction of output
items that were rated as “good”. A total of 1,770 MTurk labelers
contributed to the database. As shown in the table, we observe a

Task Pay/item Time N in N out % out
Scene curation $0.0004 1.8 s 91,868 25,357 27.6%
White balance $0.0036 16.4 s 24,771 17,839 72.0%
Segmentation $0.0160 25.8 s 16,282 103,513 N/A
Seg. Quality $0.0009 3.1 s 54,963 29,467 53.6%
Material name $0.0033 7.6 s 70,376 58,928 83.7%
Object name $0.0028 7.2 s 43,058 33,378 77.5%
Planarity $0.0010 2.7 s 60,800 38,446 63.2%
Rectification $0.0200 35.6 s 21,808 21,808 N/A
Rect. Quality $0.0020 3.6 s 21,808 16,882 77.4%
Reflectance $0.0138 20.0 s 40,148 40,148 N/A
Color Quality $0.0015 2.9 s 40,148 33,935 84.5%
Gloss Quality $0.0014 2.9 s 33,791 27,648 81.8%

Table 1: Summary statistics. For each task we present: the average
cost per item in USD (includes MTurk commission), the average
time, the number of items assigned to labelers (N in). For naming
tasks, N out is the number of shapes that had at least 3/5 agreement.
For voting and quality tasks, N out is the number of items classified
as “good” as a result of performing that task. As discussed in
Section 4.3.1, we stopped measuring segmentation quality after
limiting to the 26 best workers.

large disparity in the time and cost required across the set of tasks
(by up to two orders of magnitude, in terms of cost). The fastest and
least expensive task was curating the initial photo set, where each
processed photo cost a fraction of a cent. The other voting tasks were
also relatively inexpensive and fast, each taking less than 4 seconds.
Interestingly, it required more pay to get labelers to quickly name
materials compared to objects; labelers seemed to prefer thinking
about objects instead of materials. The task which took the most
time per item was rectification, which took more than 30 seconds
per shape, on average. In our experience with this task, it often
takes a significant amount of fine adjustment of the surface normal
to achieve a good rectification. Perhaps unsurprisingly, rectification
and appearance matching were the two most expensive tasks.

An important metric for evaluating MTurk use in collecting a large
database is the rate of data collection at a particular price point. We
found that submission rate was strongly correlated with price, the
speed at which we approve tasks, and the reputation we built with
workers. Our submission rate continued to improve as we built trust
and communicated with workers. With a cost of about 13 cents
per surface (10 cents if non-planar), our initial submission rates im-
proved from a few hundred per day to rates of 4,200 segmentations,
4,500 reflectances, and 15,000 semantic labels per day.
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(a) Unrectified synthesis (b) Rectified synthesis
Figure 10: Better exemplars for texture synthesis. (a) Synthesis
using an unrectified exemplar, showing artifacts of foreshortening.
(b) A texture synthesized from a rectified exemplar from our database.

Observations. In developing our tasks and working with labelers
on MTurk, we made a number of interesting observations. Many
users told us they really enjoyed the segmentation task, and produced
beautifully detailed segmented surfaces. We found that our best
segmentations were produced by a handful of people, some of whom
created thousands of surfaces. On the other hand, some people
created good object segmentations. In the future, these shapes could
be sent back into the pipeline for further segmentation.

The two most difficult tasks were rectification and appearance match-
ing. For appearance matching, users especially struggled with match-
ing near-mirror materials. While they were skilled at selecting color
using our interface, many labelers seemed hesitant to select low
roughness (high d). This could be due to the fact that at low rough-
ness, users can see the difference between the reflected environment
map and the true scene. In the future, we plan to test specialized
reflectance models for objects labeled as “mirror” or “glass”. On the
other hand, we observed that users often correctly used contextual
information, such as the appearance of a different object in the im-
age, to aid in appearance matching. This was especially helpful for
matching gloss, where highlights suggesting appearance may only
appear in other parts of the scene. For example, labelers might use
the gloss on nearby cabinet doors to attribute roughness parameters
to the similar surface being annotated, despite no discernible gloss
being visible on it. Finally, some surfaces in our database are multi-
colored; we found that in such cases, users consistently matched the
dominant color as initialized by k-means clustering.

Feedback and quality incentives. Rather than raising the pay
for all tasks uniformly, which did not result in higher quality (as
has been observed by others [Marge et al. 2010]), we targeted good
users for bonuses and feedback on the quality of their work. For
segmentation, we paid up to 10 times the base rate depending on
the complexity of the submission. On average, we paid an extra
25% in bonuses. Since users are paid a fixed rate by default, there
is otherwise no incentive to spend extra time producing detailed
submissions. One user replied “It’s difficult but I appreciate your
positive feedback when you approve/reject the HITs, so I’m moti-
vated to please you!” In addition to providing positive feedback, we
found it was necessary to prevent 159 users from doing our tasks
because they were either malicious or had an accuracy below 50%.
The use of sentinels is recommended by [Gingold et al. 2012] to
check labeler quality. However, we found that our tasks are not
amenable to this approach since our surfaces occur in distinctive
photographs, and repetition tips off the labeler. We would like to
revisit this in future work.

Sources of bias. In terms of representing places and surfaces,
our dataset is biased in a few ways. First, our photos are from
Flickr, which is biased towards higher-quality imagery (compared
to other sites, such as Facebook), and geographically (Flickr is more
widely used in the U.S. and Europe). Second, the keywords we
use when searching for photos (intentionally) bias our data towards
clean, uncluttered rooms. Third, our users are likely biased towards
segmenting certain types of surfaces (as we require that they segment

(a) Target photo (b) Retextured
Figure 11: Retexturing example. The input target is a segmented
photo. A rectified granite countertop surface from OpenSurfaces is
synthesized and applied to the input using the correct perspective.

a fixed number of surfaces per image, not the entire photo). Factors
such as saliency or ease of labeling likely play a role in a user’s
decision about what surfaces to label. Finally, since our environment
map is fixed, differences in lighting between the true scene and our
proxy environment map could affect the reflectance judgement of
users and introduce small color shifts. Our pipeline reduces this
effect by rejecting improperly white balanced photos. However,
further study is needed to understand the extent of these errors.

6 Proof-of-Concept Applications

Our surface catalog can both assist and enhance existing and new
applications in material search, browsing, editing, and classification.
Here we describe a few such supporting proof-of-concept uses of
the database, and discuss future applications.

6.1 Texturing

Richer texture exemplars. OpenSurfaces provides a large set of
rectified real-world textures for use as texture exemplars. These
improve over the corresponding unrectified and foreshortened tex-
tures, letting users of the catalog to expand their access to interesting
real-world textures. Figure 10 illustrates this advantage.

Retexturing. Consider a user with a photograph containing a seg-
mented surface (e.g., a countertop) who wants to visualize a home
remodeling change to that surface. The user can browse OpenSur-
faces for a suitable replacement using the rich annotated data to
search on color, material properties, object name, or substance type.
The rectified textures found in our catalog can be used as the input to
a texture synthesis algorithm (see Figure 11 for a synthesized granite
texture drawn from our database to retexture a kitchen counter, with
minor touch-ups applied as a post-process). While texture synthesis
requires a clean example, and most of our shapes contain shadows
or lighting, we did not find it difficult to select suitable shapes, since
many shapes with undesired effects contain a clean inner region.

6.2 Informed scene similarity

Our database can be used to enhance image and material search
(e.g., to generate ideas for interior design projects), by allowing for
more targeted queries. With our rich annotations, we can explore
interior scenes in ways previously not possible. For example, Fig-
ure 12 shows a search for wood flooring in kitchens and a search for
fabric sofas in living rooms. Using our user-annotated reflectance
parameters, we can further refine and sort the results by diffuse color
similarity to the input query. While the input query is a segmented
material from our database, the query can also be constructed by
searching for a phrase (e.g. “kitchen wood floor”) and selecting
photos that have the desired color.

6.3 Future applications

There are many potential applications of a database of materials and
surfaces beyond the proofs-of-concept we describe.
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Query

Query Results: fabric sofas in living rooms, sorted by di�use 
color similarity

Results: wood �oors in kitchens, sorted by di�use color 

Figure 12: Informed scene similarity. Left: query object. Right:
photos containing objects of the same name and material, sorted by
diffuse color similarity to the query object.

Search. Searching for photos that contain shiny or rough materi-
als, or particular colors, can aid people interested in material design
(e.g., interior decorating or home remodeling). Another search prob-
lem, search-by-material, could identify which paint or fabric can be
bought from a store to best match an object in a photo. Further, our
large database of community-gathered photos can be analyzed to
discover common co-occurrences or relationships between certain
materials. For example, we could tell what materials, objects or col-
ors are often found above, below or nearby a given object. Similarly,
we could offer suggestions to homeowners, answering such ques-
tions as: “for kitchens with black granite countertops, what kinds of
materials are often used for cabinets?” We could also use existing
materials to automatically recognize that the query contained black
granite countertops, thus requiring the user to only submit an input
photo. As our database grows, we could discover geographic or
temporal trends in material design, given suitably tagged imagery.

Editing. Aside from search, material editing and transfer is also
useful. Synthetic object insertion into photographs [Debevec 1998;
Karsch et al. 2011] could use our material parameters for accurate
compositing. Alternatively, one can imagine extending Photo Clip
Art [Lalonde et al. 2007] to the domain of material compositing,
where rather than attempting to accurately simulate lighting and
shadows, one could search for a surface that contains the desired ef-
fects. The presence of surface normals can also aid reasoning about
perspective or scene geometry. Finally, surfaces such as wood may
appear very different depending on how the surfaces are treated (e.g.,
painted, or unfinished). Our database can potentially be combined
with image editing software to visualize such effects.

Classification. We believe that one of the strongest applications
of our database is enabling the automatic classification of materials
and material properties. Our materials can form useful training data
and priors for estimating the category, reflectance, and roughness
of materials. Our database and photos are completely open, and we
hope will serve as a useful resource for these and other applications.

7 Conclusions and future work

This paper takes the first steps towards building a “big data” cata-
log of surface properties of everyday materials in our world, with
reflectance, texture and contextual information for these surfaces.
While the current data collected, with thousands of surfaces (and
growing), can immediately be useful to many graphics and vision
applications, many promising research directions remain.

Labelers often are faced with difficult questions; what is the re-
flectance of a mirror reflecting a pink wall, pink or glass? Developing
better guidelines and interfaces for difficult surfaces like transparent
and translucent materials is an interesting avenue of future work.

To further increase scalability, we plan to explore more automation
to help users, especially for difficult tasks like rectification and ap-
pearance matching—it is often easier to improve on a good answer,
or accept or reject an automatically generated result, than to create an
answer from scratch. For example, our use of clustering of surface
colors significantly improved labeler speed and accuracy in appear-
ance matching. Similarly, detecting vanishing points assisted in the
rectification task. Indeed, we hope that our database can effectively
bootstrap itself, by creating large amounts of training data useful for
improving algorithms for tasks like material recognition [Liu et al.
2010] and reflectance estimation [Dror et al. 2001].

Further, we would like to address the sources of bias in our input
collections, by expanding to include more categories, and develop
incentive systems to get a more complete annotation of images.

While we include quality controls at every stage of the pipeline,
we are interested in further evaluating the quality of our data in
comparison to controlled, in-lab methodologies. For reflectance, we
plan to physically insert known objects into scenes and compare the
reflectance returned by the pipeline to the measured material prop-
erties for those known objects. In addition, we plan to render and
annotate a larger collection of synthetic scenes to validate surface
normals, reflectances, and segmentations.
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